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The linear problem of the harmonic oscillations of an ideal incompressible heavy liquid with a free surface in the presence of 
two and more infinitely long partially submerged cylindrical bodies of arbitrary cross-section is considered. It is proved that there 
are configurations of the bodies which provide examples of the non-uniqueness of the boundary-value problem in the case of 
an arbitrary frequency of the oscillations and an arbitrary non-zero angle between the generatrix of the cylinders and the direction 
of propagation of the surface waves. In the case of these configurations, the homogeneous boundary-value problem has non- 
trivial solutions with a finite energy integral, which describe trapped modes of oscillation of the liquid. © 1999 Elsevier Science 
Ltd. All rights reserved. 

The substantial progress in investigations of the solvability of linear problems describing the interaction 
of bodies with an unbounded ideal liquid with a free surface (see the review in [1], for example) is 
associated with the use of an inverse scheme for constructing examples of non-uniqueness which was 
used for the first time in [2] in the case of the plane problem of the oscillations of a liquid in the presence 
of partially submerged bodies. According to this scheme, a certain potential, composed of sources 
arranged on the free surface of the liquid and the streamlines corresponding to it, is considered. These 
streamlines, which begin and end in the free surface such that one of the singularities lies between the 
terminal points, can be chosen as the contours of bodies for which the above-mentioned potential is a 
solution of the homogeneous boundary-value problem. 

This scheme has been used to construct examples of the non-uniqueness of the plane problem of 
the motion of partially submerged bodies [3]. It can also be used in the case of certain spatial problems. 
For instance, examples of non-uniqueness in the case of the axially symmetric problem of the oscillations 
of a fluid in the presence of partially submerged bodies have been constructed in [4]. 

The existence of trapped modes of oscillation of a liquid in the problem of the interaction of waves 
with partially submerged infinitely long cylindrical bodies when there is an arbitrary angle 0 between 
the direction of propagation of the surface waves and a plane orthogonal to the ~ axis, that is, the 
generatrix of the system of cylindrical bodies, is investigated below (the case when 0 = 0 was considered 
previously in [2]). The existence of examples of non-uniqueness in the case of this problem has only 
been proved [1] for fairly small values of the angle 0. This constraint is removed below. Another family 
of potentials is proposed and a technique is developed which enables one to prove the existence of 
examples of non-uniqueness for all directions of propagation of the waves, apart from the case when 
propagation occurs along the generatrix of the cylinders, when 0 = ___n/2. 

1. F O R M U L A T I O N  OF THE P R O B L E M  

The problem of the oscillations of an ideal incompressible heavy liquid of finite depth with a free 
surface in the presence of two and more parallel, infinitely long, partially submerged cylindrical bodies 
is considered. The generatrix of the system of bodies ~ makes an arbitrary non-zero angle with the 
direction of propagation of the surface waves. It is assumed that this motion of the liquid is irrotational, 
harmonic in time with a frequency 0~ and periodic with respect to the variable ~. The velocity potential 

Re { u(x, y)e~i~e -i°~t } 

then exists, where k = Ksin 0 is the projection of the wave vector onto the ~ axis, K = o~2/g is the wave 
number and g is the acceleration due to gravity. 

The linear approximation of the theory of surface waves is used to determine the potential u. Here, 
the amplitudes of the waves and I Vu I are assumed to be small and the boundary conditions can be 
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Fig. 1. 

brought together in the unperturbed free surface y = O. The notation in the case of two bodies is 
introduced in Fig. 1 where a cross-section of the plane which is orthogonal to the generatrix of the 
cylinders ~ is shown. IV. is a section of the domain occupied by the liquid, S+ and S_ are the wetted 
surfaces of the left and right bodies respectively and F_, Fo, F+ are three parts of the unperturbed free 
surface. The potential u satisfies the following boundary-value problem 

(V 2 - k2)u = 0 in  W (1.1) 

Ku-uy=O in F= F_ u Fou F + (1.2) 

~ul~n = f  in S = S_ u S. (1.3) 

Vu --> 0 when y ---> --~ (1.4) 

The problem of the existence of examples of non-uniqueness in the case of problem (1.1)-(1.4), that 
is, the existence of configurations of the bodies S± and potentials which provide non-trivial solutions 
of the problem with homogeneous condition (1.3) on the contours S± is investigated below. We shall 
henceforth therefore p u t f  = 0. 

Problem (1.1)-(1.4) can be regarded as the problem of finding the spectrum, where K (or k) is a 
characteristic number and u is an eigenfunction. If the energy functional 

D[u] = 51Vu 12dxdy + K~I u 12dx 
W F 

is infinite in the case of a solution u of problem (1.1)-(1.4), then it is said that the corresponding value 
of K belongs to the continuous spectrum of the problem. If 

D[u] < 0 *  (1.5) 

then K belongs to the point spectrum and the function u is called a trapped mode of oscillation. 
In the general case, in order to describe the process of the radiation and scattering of waves, problem 

(1.1)-(1.4) must be supplemented with conditions which determine the form of the wave motion at 
infinity. Here, these conditions can be omitted since only trapped modes will be considered and condition 
(1.5) implies that there are no waves at infinity. 

The aim of the following three sections of this paper is to prove the following assertion. 

Theorem. Pairs of bodies St ,  for which problem (1.1)-(1.5) has a non-trivial solution, exist for any 
values of the wave number K and the angle 0 ~ __.rd2. 

It will subsequently be shown in Section 5 that the proof of the theorem transfers directly to the case 
of more than two bodies. 

2. EXAMPLES OF N O N - U N I Q U E N E S S  

In order to construct potentials which provide examples of non-uniqueness, Green's function of the 
problem, that is, the potential of a line of sources arranged on the free surface (x,y) = ({, 0), is required. 
This function can be written in the form 

Re{ G(x, y, {)e~ik{e -~''1 

where the potential G is the solution of the problem 



Trapped modes of oscillation of a liquid for surface-piercing bodies in oblique waves 259 

2 
(Vx,y'- k2)G(x, y, ~) = 0 when y < 0, --o0 < x < o, 

K G - G y = O  when y = 0 , x ~  

(2.1) 

(2.2) 

G(x,y,~) ~ - l o g 4 ( x - ~ )  2 +y2 when ( x - ~ )  2 +y2 .._) 0 (2.3) 

Vx. yG(x, y, ~) ---) 0 when y --) --oo (2.4) 

The function G, which satisfies relations (2.1)-(2.4), has been constructed and investigated earlier 
[5] and can be written in the form [1] 

G(x, y, ~) = 2 ~ g(t) exp {ly(t 2 + tg 20)½ } cos l(x - ~)tdt (2.5) 
C 

see 0 + (t 2 + tg20) Y2 
l = ~ - k  2, g(t)= t 2 - 1  

where the integration is carried out along the lower edge of the cut (0, +oo). The choice of such a contour 
C which passes under the point t = 1 corresponds to waves departing to infinity in the asymptotic form 
of the function G. 

In order to construct examples of non-uniqueness, we make use of the potential 

tl~(x, y) = -(2K)-l[Gx(x, y, 0) - Gx(x, y, -2a)], a(k) =/-l~ (2.6) 

which is made up of horizontal dipoles. It is obvious that the potential (2.6) satisfies relations (1.1), 
(1.2) and (1.4). The asymptotic representation 

Gx(x, y, ~) - -2rcKeXyeittX~'sign(x - ~) 

the residual term of which decays exponentially I x - ~ [ ---r oo, was then obtained [5]. The absence of 
wave components in the asymptotic form of • at infinity is therefore a consequence of the choice of 
the distance between the dipoles, equal to 2a. 

We will now consider the streamlines of the potential O, that is, the curves with tangents which indicate 
the direction of the velocity vector (~x, ~y) at the contact point. These curves are the trajectories (x(s), 
y(s)) of the system of autonomous differential equations 

.~ = tl~x(X(S ), y(s)), ~ = ~y(x(s), y(s)) (2.7) 

where the dot denotes differentiation with respect to the parameter s. 
If a trajectory of system (2.7) starts and ends in the free surface and encompasses a point at which 

a dipole is located (that is, the terminal points are located in the free surface on different sides of the 
dipole), then such a line can be chosen as one of the contours S+ (Fig. 1). In this case, by virtue of 
(2.7), the potential • satisfies homogeneous condition (1.3) on such a contour. The proof of the theorem 
therefore reduces to proving the existence of solutions of system (2.7) which encompass singular points. 
The advantage of potential (2.6) compared with potentials consisting of sources, which have been used 
previously [1], lies in the fact that there are solutions of (2.7), which encompass singular points. The 
advantage of potential (2.6) compared with potentials consisting of sources, which have been used 
previously [1], lies in the fact that there are solutions of (2.7), which encompass a singular point, in as 
small a neighbourhood of this point as desired. This latter fact enables us to use asymptotic methods 
to prove the existence of trapped modes. The local asymptotic forms of the potential and its derivatives, 
which are required for the proof, will be obtained in Section 3 and the proof of the theorem is therefore 
postponed until Section 4. 

As a consequence of the evenness of the potential O(x - a,y) with respect to the variable x, the pattern 
of the streamlines, which are determined by Eqs (2.7), is symmetrical about the line {x = -a}. We shall 
therefore henceforth confine the treatment to streamlines which are close to the right-hand dipole, which 
is positioned at the origin of the system of coordinates. 
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3. L O C A L  A S Y M P T O T I C  F O R M S  OF T H E  P O T E N T I A L  
AND ITS D E R I V A T I V E S  

We will now study the behaviour of the potential 
• in the neighbourhood of the origin of the system of coordinates. It is convenient to write O(x, y) = 
O0(x, y) - O0(x + 2a, y), where 

+oo 

t~o(x, y) = S go(t, y)e ty' sinlxtdt (3.1) 
0 

go (t, y) = t cos Og(t) exp{ly((t 2 + tg 20)~ _ t)} 

Since the integrands in the representations of the functions O0(x, y) and O0(x + 2a, y) have the same 
singularity (a simple pole) at t = 1 and the potential • is the difference between these functions, the 
method of regularizing the integral in (3.1) is unimportant. We shall assume that this integral is evaluated 
in the sense of a principal value. Next, we define the function 

gn (t, y) = go (t, y) - cos 0 - It h° (y' 0), h o (y, 0) = 1 + 21- Ky sin 2 0 (3.2) 

such that gl(t, y)  = ~(t -2) as t ---> ~ uniformly with respect to y when - ~  < c ~< y ~< 0. Representation 
(3.1) of the function • 0 can then be rewritten in the form 

-boo 

• 0 (x, y) = ~ gn (t, y)e b't sin lxtdt + cos 0 S e b't sin lxtdt + 
2 2 

+h0(y,0)T e ty, sin lXtdt + cx(x,y) (3.3) 
2 t 

where 

o~(x, y) = go (t, y)e tyt sin/xt - sin/x. (3.4) 
t--i" 

The expression in the square brackets is a function of the parameter t, which is analytic in the interval 
of integration. The analytic form of this expression with respect to the pair of variables (x,y) e R 2 when 
t ,  1 is also obvious. In view of the above-mentioned properties, Hartogs lemma (see [6, p. 216], for 
example) guarantees the analyticity of the integrand in (3.4) with respect to the set of variables (x, y~ 
t) ~ R 2 × [0, 2]. The analyticity of the function ~(x, y) with respect to the set of parameters (x, y) ~ R" 
follows from this. 

The estimate gl(x,y)  when t ---> + ~  mentioned above guarantees the uniform convergence of the first 
integral in (3.3) in any compact subset of the lower half-plane ~2 = {3, ~< 0}. Hence, the first term on 
the right-hand side of (3.3) is a function of the parameters (x, y) which is continuous in ~2. 

We now introduce the complex coordinates z = x + iy and use the formula 

+~e-itztdt = En(2ilz), Imz < 0 (3.5) 
2 t 

where E 1 is an integral function of the exponent [7, 5.1.1]. It is well known that the expression El(z) + 
log z is a function of the parameter z [7, 5.1.11] which is regular in C. From (3.3) and (3.5), we thereby 
obtain 

X 
aP o (x, y) = K(x2 + y2) ~" arg K(x + iy) + d~(x, y) (3.6) 

where ~(x, y) is a function which is continuous at the point (0, 0). It follows from results which have 
been obtained previously [5] that the potential ~0(x, y) can be continued analytically into the upper 
half-plane with a cut along the positive part of they axis, on which it has a discontinuity. A representation, 
similar to (3.6), therefore holds for the function O, where the contribution from the second dipole is 
included in the continuous term. 

We will now consider the complex potential 
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w(Kz) = ll(Kz) - ilogKz 

The streamlines of the potential w, which are determined by the equations Im{w(Kz)} = const, are 
symmetrical about they axis and join the two parts of the free surface (see Fig. 2, where the streamlines 
are shown forx > 0). Meanwhile, the expression Re{w(Kz)} is identical to the sum of the first two terms 
of representation (3.6). It is therefore to be expected that the trajectories which are defined by Eq. (2.7) 
will be close in some sense to the streamlines of the potential w and also form contours which contain 
the singularity. The remainder of this paper is concerned with the proof of this supposition. 

Asymptotic representations of the functions q~x, q~y, ~ ,  q)yy, and O~y, when z ~ 0 are required. For 
this purpose, we shall make use of the scheme employed to obtain representation (3.6). To fix our ideas, 
we will consider ~x. It follows from (3.1) that 

COx (x, y)  = l ~ tg o (t, y)e  I-vt c o s  lxtdt + o(x ,  y) (3.7) 

o(x,  y) = Ctx( X, y) + ~ x °  (x + 2a, y) 

where the function a(x, y) is analytic in R 2 with a cut (x = -2a, y > 0}. Next, suppose that 

g2 (t ,  y )  = tg 0 (t, y)  - t c o s  0 - h 0 (y,  O) - I c o s  Oh I (y,  O) 
t 

hi(Y,0) = 1+2 (1+  Ky)tg20+812y2tg40 

In this case, g2(x, y) = ~(t -2) and t ~ +oo is uniform with respect y, -oo < c ~< y ~ 0. Formula (3.7) can 
then be written as follows: 

4"** 1, +** 
l - l ~  x (x, y) = ~ g2 (t, y)e v cos lxtdt + o(x,  y) + cos 0 I te 6,t cos lxtdt + 

2 l 2 

+'0 ~ e bt cos lXtdt 
+h o (y, O) ~ e t'vt cos lxtdt + cos 0h I (y, 0) 

2 2 t 

The definition of the function g2 ensures the uniform convergence of the first integral on the rig_hht- 
hand side of the last formula and, as a consequence of this, the continuity of the indicated term in R2_. 
Then, after some reduction, we arrive at the representation when r = Ix + iy I ~ 0 

y2 _ x  2 y 1 K ( l + c o s 2 0 ) l o g K i x + i y l + ~ l  ) (3 .8 )  
COx = K(x  2 + y2)2 x 2+y2 2 

In a similar way, it can be shown that, as r ~ 0 

/¢u 

- 0 . 5  

- f  J /  
J 

- t S #  0 . 5  ¢ 
/Ca= 

Fig. 2. 
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2xy x 2y(3x 2 _ y2 ) 
~ y  = - K ( x  2 + y2)2 + x 2 + y2 + (~(1), ~xy. = K--~x 2 + y~'~ + 0(r-2) 

2x(x2-3y2)  ~'O(r-2), ~xx + ~.vy = 0(r-2) 
dPxx = K ( x  2 + y2)3 

(3.9) 

4. P R O O F  OF T H E  E X I S T E N C E  OF E X A M P L E S  OF N O N - U N I Q U E N E S S  

Here, it will be convenient to change the parametrization of the curves, defined by system (2.7), by 
rewriting the system as follows: 

Yc = X(x(s),  y(s)), # = Y(x(s), y(s)) (4.1) 

X ( x , y )  = K ( x  2 + y2 )~ t~x (X , y ) ,  Y ( x , y ) =  K ( x  2 + y 2 ) ~ : ( x , y )  

We also consider a model system, t he  right-hand side of which contains the leading terms of the 
asymptotic forms of the functio~is X and Ywhen r ---> 0 

/Co = Xo(xo(s), yo(s)), Yo = ro(xo(s), yo(s)) (4.2) 

X 0 (x, y) = (y2 _ x2 )(x 2 + y2)-~,  Y0 (x, y) = -2xy(x 2 + y2)-½ 

The trajectories of (4.2) in ~_ are circles which we write as follows: 

Xo(S) = psinx(s), yo(s) = --p(l + eosx(s)) (4.3) 

In this case, the values x = __.r~ correspond to the point (0, 0). 
We will now study the properties of the parametrization x(s). We substitute (4.3) into (4.2) and obtain 

the differential equation 

x'(s)  = 2 sin ~ - x(s------2 (4.4) 
2 

Also, suppose that x(0) = 0, that is, the value of the parameter s = 0 corresponds to the lowest point 
of the circle. 

It is then obvious that sin t < t when t > 0, and, for an arbitrary value 0 < c < 1 in a sufficiently 
small neighbourhood of zero 0 < t < 8, we have the inequality ct < sin t. On applying the comparison 
theorem [8, 3.3.2], we obtain, in the case of solutions o f  Eq. (4.4) which are sufficiently close to n, the 
estimate 

rc - c - le  -cs < x(s)  < ~ - e -s 

It follows from this that x(s) ---> __.Tt when s --> __.o,,. Values of the parameter s = __.~ therefore correspond 
to the upper point of the trajectory of the system z = 0, but, in this case, x(s) = __.n + (~(e ÷s) when 
$ ---> __.oo. 

We now consider the solutions of systems (4.1) and (4.2), that is, the trajectories (xP(s), yP(s)) and 
(XPo(S), yPo(s)), respectively, which pass through the point (0, -p),  to which value of the parameter s = 0 
corresponds. It can be shown using formulae (4.1), (4.2) and (3.8)-(3.9) that the maximum value of 
the quantities :~P(s), );°(s), :~g(s)and ~;~(s) on the parts of the trajectories lying in the half-circle Bdp = 
{(x, y): Ix + iyl <- do,  y <~ 0} is of the order of 0(p) when p ---> 0. It follows from this that, for any value 
of the parameter s. < ~,, it is possible to find a d(c)  I> 1 such that, when I s I ~< s, and 0 < p ~< c, the 
trajectories (xP(s),yP(s)) and (x~(s),y~(s)) are contained in Bdp. We further note that the functions I VXI, 
IVY I, I VX01 and I VY01 are bounded in the neighbourhood of the origin of the system of coordinates. 
We now define 

M(p) = max { I VX o (z) I,I V Y0 (z) I } 
z~Bdp 

e(p) = max {I X(z )  - X o (z) I,I Y ( z ) -  Yo (z) I } 
ZEBdp 
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The comparison theorem [8, T 3.3.1] and the estimate e(p) = (3(p 2) when p --) 0 then guarantee that 

e(P) (e M(p)'* - 1) : C(p 2) (4.5) max{ II xP(s) - xg(s)I1:1 s I< s.} < 

We now consider a certain neighbourhood of the origin of the system of coordinates V C ~2 which 
includes the parts of the free surface to the right and to the left of the dipole. Suppose the neighbourhood 
V is sufficiently small such that, in it, there are no singular points of system (4.1) X = Y = 0, which 
differ from (0, 0) (the existence of such a neighbourhood follows from (3.8) and (3.9)). Now, consider 
a domain S C Vconsisting of the solution of (4.1) which passes through the negative part of they  axis. 
We denote the subsets IAS, which include the parts of the free surface when +_x > 0 by ~;_+, respectively. 
The assumption that S does not have common points with the free surface to the left of the dipole (Fig. 
3) adjacent to the origin of  the system of  coordinates leads to a contradiction. 

Actually, we note that the points (XPo(S.),yPo(s.)) lie on a straight line which passes through the origin at a certain 
angle which can be made as small as desired at the price of an increase in the magnitude of s.. In view of (4.5), 
the curve y. therefore touches the free surface at the point (0, 0). We will denote the function defining y. in the 
neighbourhood of the origin by y.(x). Since y.(x) = o(x) whenx ~ 0, it follows from (4.1), (3.8) and (3.9) that y'.(x) 
satisfies the equation 

y, '(x) = -Kx  + 2x'-ly,(x) + ~,(x), ~,(x) : o(x) 

We write y.(x)  = -Kx21ogK I x I + q)(x). Then, q) satisfies the equation 

cp'(x)- 2 tq~x)  = X(x) 

the solution of which can be represented in the form 

I 

tp(x) = x2 (const- ~-2~.(~)d~) (4.6) 
x 

Next, on taking account of the estimate ~, = o(x) 
when x ~ 0, we obtain 

lim I~-22k(~)d ~-ld~ = lim x-I~,(x) = 0 
X~Ux I x  x.-.o 

The estimate q)(x) = o(x21og x) follows from the last formula and the equality (4.6), and it is thereby established 
that 

y.(x) = - K x  21ogKIxl + o(x21ogx) when x ~ 0 

This last equation contradicts the assumption that S does not have common points with the free surface to the left 
of the dipole, since it forbids line y, departing from the point (0, 0) into the lower half-plane. 

Hence, the set S includes a certain part of the free surface and the dipole is located within this range. 
It is therefore possible to find a family of trajectories So C S, the terminal points of which are located 
in the free surface on different sides of the point at which the dipole is situated, and this holds for any 
value of the angle 0 ~ __.~2. Since the part of the free surface which belongs to Vis not a characteristic 
line of (4.1), the trajectories of the family So touch the free surface at a non-zero angle and form contours 

Fig. 3. 
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possessing the properties required to regard them as contours of the bodies S± for which • is a solution 
of problem (1.1)-(1.5). The theorem is thereby proved. 

5. O T H E R  E X A M P L E S  OF N O N - U N I Q U E N E S S  

We will now consider the family of potentials 

Wn (±) (x, y) = ~0 (x - a(~ ±), y) -T- ~0 (x + a(n ±), y) 

an (±) = ! -I (n - I~ _+ I~)~, n = 1, 2 .... 

Here, @(x - a ~+), y) = ~ +)(x, y) and qJ(n +)(q~t -)) are even (odd) functions of the variable x. The potentials 
q ~  are wave-free and also provide examples of the non-uniqueness of problem (1.1)-(1.5). The proof 
presented above of  the existence of  streamlines which encompass singularities remains valid by virtue 
of its local character. 

The results obtained transfer to the case when the number of bodies N, for which the eigenvalue 
problem (1.1)-(1..5) is formulated, is greater than two. We denote the integral part of  the number N/2 
by m. Then, for example, the potential 

2(N - 2m)[~o(X,  y) + ~o (X  + a~ +) , y)] + i Wn(+)( x, Y) 
n=l 

is wave-free and has N singularities in the free surface. 
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